\(\int \frac {x (a+b \csc ^{-1}(c x))}{(d+e x^2)^{5/2}} \, dx\) [158]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [F]
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F(-2)]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 21, antiderivative size = 138 \[ \int \frac {x \left (a+b \csc ^{-1}(c x)\right )}{\left (d+e x^2\right )^{5/2}} \, dx=\frac {b c x \sqrt {-1+c^2 x^2}}{3 d \left (c^2 d+e\right ) \sqrt {c^2 x^2} \sqrt {d+e x^2}}-\frac {a+b \csc ^{-1}(c x)}{3 e \left (d+e x^2\right )^{3/2}}+\frac {b c x \arctan \left (\frac {\sqrt {d+e x^2}}{\sqrt {d} \sqrt {-1+c^2 x^2}}\right )}{3 d^{3/2} e \sqrt {c^2 x^2}} \]

[Out]

1/3*(-a-b*arccsc(c*x))/e/(e*x^2+d)^(3/2)+1/3*b*c*x*arctan((e*x^2+d)^(1/2)/d^(1/2)/(c^2*x^2-1)^(1/2))/d^(3/2)/e
/(c^2*x^2)^(1/2)+1/3*b*c*x*(c^2*x^2-1)^(1/2)/d/(c^2*d+e)/(c^2*x^2)^(1/2)/(e*x^2+d)^(1/2)

Rubi [A] (verified)

Time = 0.10 (sec) , antiderivative size = 138, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.238, Rules used = {5345, 457, 98, 95, 210} \[ \int \frac {x \left (a+b \csc ^{-1}(c x)\right )}{\left (d+e x^2\right )^{5/2}} \, dx=-\frac {a+b \csc ^{-1}(c x)}{3 e \left (d+e x^2\right )^{3/2}}+\frac {b c x \arctan \left (\frac {\sqrt {d+e x^2}}{\sqrt {d} \sqrt {c^2 x^2-1}}\right )}{3 d^{3/2} e \sqrt {c^2 x^2}}+\frac {b c x \sqrt {c^2 x^2-1}}{3 d \sqrt {c^2 x^2} \left (c^2 d+e\right ) \sqrt {d+e x^2}} \]

[In]

Int[(x*(a + b*ArcCsc[c*x]))/(d + e*x^2)^(5/2),x]

[Out]

(b*c*x*Sqrt[-1 + c^2*x^2])/(3*d*(c^2*d + e)*Sqrt[c^2*x^2]*Sqrt[d + e*x^2]) - (a + b*ArcCsc[c*x])/(3*e*(d + e*x
^2)^(3/2)) + (b*c*x*ArcTan[Sqrt[d + e*x^2]/(Sqrt[d]*Sqrt[-1 + c^2*x^2])])/(3*d^(3/2)*e*Sqrt[c^2*x^2])

Rule 95

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 98

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[b*(a +
b*x)^(m + 1)*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/((m + 1)*(b*c - a*d)*(b*e - a*f))), x] + Dist[(a*d*f*(m + 1)
 + b*c*f*(n + 1) + b*d*e*(p + 1))/((m + 1)*(b*c - a*d)*(b*e - a*f)), Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*
x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && EqQ[Simplify[m + n + p + 3], 0] && (LtQ[m, -1] || Sum
SimplerQ[m, 1])

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 457

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rule 5345

Int[((a_.) + ArcCsc[(c_.)*(x_)]*(b_.))*(x_)*((d_.) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(d + e*x^2)^(p + 1
)*((a + b*ArcCsc[c*x])/(2*e*(p + 1))), x] + Dist[b*c*(x/(2*e*(p + 1)*Sqrt[c^2*x^2])), Int[(d + e*x^2)^(p + 1)/
(x*Sqrt[c^2*x^2 - 1]), x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[p, -1]

Rubi steps \begin{align*} \text {integral}& = -\frac {a+b \csc ^{-1}(c x)}{3 e \left (d+e x^2\right )^{3/2}}-\frac {(b c x) \int \frac {1}{x \sqrt {-1+c^2 x^2} \left (d+e x^2\right )^{3/2}} \, dx}{3 e \sqrt {c^2 x^2}} \\ & = -\frac {a+b \csc ^{-1}(c x)}{3 e \left (d+e x^2\right )^{3/2}}-\frac {(b c x) \text {Subst}\left (\int \frac {1}{x \sqrt {-1+c^2 x} (d+e x)^{3/2}} \, dx,x,x^2\right )}{6 e \sqrt {c^2 x^2}} \\ & = \frac {b c x \sqrt {-1+c^2 x^2}}{3 d \left (c^2 d+e\right ) \sqrt {c^2 x^2} \sqrt {d+e x^2}}-\frac {a+b \csc ^{-1}(c x)}{3 e \left (d+e x^2\right )^{3/2}}-\frac {(b c x) \text {Subst}\left (\int \frac {1}{x \sqrt {-1+c^2 x} \sqrt {d+e x}} \, dx,x,x^2\right )}{6 d e \sqrt {c^2 x^2}} \\ & = \frac {b c x \sqrt {-1+c^2 x^2}}{3 d \left (c^2 d+e\right ) \sqrt {c^2 x^2} \sqrt {d+e x^2}}-\frac {a+b \csc ^{-1}(c x)}{3 e \left (d+e x^2\right )^{3/2}}-\frac {(b c x) \text {Subst}\left (\int \frac {1}{-d-x^2} \, dx,x,\frac {\sqrt {d+e x^2}}{\sqrt {-1+c^2 x^2}}\right )}{3 d e \sqrt {c^2 x^2}} \\ & = \frac {b c x \sqrt {-1+c^2 x^2}}{3 d \left (c^2 d+e\right ) \sqrt {c^2 x^2} \sqrt {d+e x^2}}-\frac {a+b \csc ^{-1}(c x)}{3 e \left (d+e x^2\right )^{3/2}}+\frac {b c x \arctan \left (\frac {\sqrt {d+e x^2}}{\sqrt {d} \sqrt {-1+c^2 x^2}}\right )}{3 d^{3/2} e \sqrt {c^2 x^2}} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 6 vs. order 3 in optimal.

Time = 0.35 (sec) , antiderivative size = 130, normalized size of antiderivative = 0.94 \[ \int \frac {x \left (a+b \csc ^{-1}(c x)\right )}{\left (d+e x^2\right )^{5/2}} \, dx=\frac {-\frac {2 a}{e}+\frac {2 b c \sqrt {1-\frac {1}{c^2 x^2}} x \left (d+e x^2\right )}{d \left (c^2 d+e\right )}+\frac {b \sqrt {1+\frac {d}{e x^2}} \left (d+e x^2\right ) \operatorname {AppellF1}\left (1,\frac {1}{2},\frac {1}{2},2,\frac {1}{c^2 x^2},-\frac {d}{e x^2}\right )}{c d e x}-\frac {2 b \csc ^{-1}(c x)}{e}}{6 \left (d+e x^2\right )^{3/2}} \]

[In]

Integrate[(x*(a + b*ArcCsc[c*x]))/(d + e*x^2)^(5/2),x]

[Out]

((-2*a)/e + (2*b*c*Sqrt[1 - 1/(c^2*x^2)]*x*(d + e*x^2))/(d*(c^2*d + e)) + (b*Sqrt[1 + d/(e*x^2)]*(d + e*x^2)*A
ppellF1[1, 1/2, 1/2, 2, 1/(c^2*x^2), -(d/(e*x^2))])/(c*d*e*x) - (2*b*ArcCsc[c*x])/e)/(6*(d + e*x^2)^(3/2))

Maple [F]

\[\int \frac {x \left (a +b \,\operatorname {arccsc}\left (c x \right )\right )}{\left (e \,x^{2}+d \right )^{\frac {5}{2}}}d x\]

[In]

int(x*(a+b*arccsc(c*x))/(e*x^2+d)^(5/2),x)

[Out]

int(x*(a+b*arccsc(c*x))/(e*x^2+d)^(5/2),x)

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 276 vs. \(2 (114) = 228\).

Time = 0.37 (sec) , antiderivative size = 573, normalized size of antiderivative = 4.15 \[ \int \frac {x \left (a+b \csc ^{-1}(c x)\right )}{\left (d+e x^2\right )^{5/2}} \, dx=\left [-\frac {{\left (b c^{2} d^{3} + {\left (b c^{2} d e^{2} + b e^{3}\right )} x^{4} + b d^{2} e + 2 \, {\left (b c^{2} d^{2} e + b d e^{2}\right )} x^{2}\right )} \sqrt {-d} \log \left (\frac {{\left (c^{4} d^{2} - 6 \, c^{2} d e + e^{2}\right )} x^{4} - 8 \, {\left (c^{2} d^{2} - d e\right )} x^{2} + 4 \, \sqrt {c^{2} x^{2} - 1} {\left ({\left (c^{2} d - e\right )} x^{2} - 2 \, d\right )} \sqrt {e x^{2} + d} \sqrt {-d} + 8 \, d^{2}}{x^{4}}\right ) + 4 \, {\left (a c^{2} d^{3} + a d^{2} e + {\left (b c^{2} d^{3} + b d^{2} e\right )} \operatorname {arccsc}\left (c x\right ) - {\left (b d e^{2} x^{2} + b d^{2} e\right )} \sqrt {c^{2} x^{2} - 1}\right )} \sqrt {e x^{2} + d}}{12 \, {\left (c^{2} d^{5} e + d^{4} e^{2} + {\left (c^{2} d^{3} e^{3} + d^{2} e^{4}\right )} x^{4} + 2 \, {\left (c^{2} d^{4} e^{2} + d^{3} e^{3}\right )} x^{2}\right )}}, \frac {{\left (b c^{2} d^{3} + {\left (b c^{2} d e^{2} + b e^{3}\right )} x^{4} + b d^{2} e + 2 \, {\left (b c^{2} d^{2} e + b d e^{2}\right )} x^{2}\right )} \sqrt {d} \arctan \left (-\frac {\sqrt {c^{2} x^{2} - 1} {\left ({\left (c^{2} d - e\right )} x^{2} - 2 \, d\right )} \sqrt {e x^{2} + d} \sqrt {d}}{2 \, {\left (c^{2} d e x^{4} + {\left (c^{2} d^{2} - d e\right )} x^{2} - d^{2}\right )}}\right ) - 2 \, {\left (a c^{2} d^{3} + a d^{2} e + {\left (b c^{2} d^{3} + b d^{2} e\right )} \operatorname {arccsc}\left (c x\right ) - {\left (b d e^{2} x^{2} + b d^{2} e\right )} \sqrt {c^{2} x^{2} - 1}\right )} \sqrt {e x^{2} + d}}{6 \, {\left (c^{2} d^{5} e + d^{4} e^{2} + {\left (c^{2} d^{3} e^{3} + d^{2} e^{4}\right )} x^{4} + 2 \, {\left (c^{2} d^{4} e^{2} + d^{3} e^{3}\right )} x^{2}\right )}}\right ] \]

[In]

integrate(x*(a+b*arccsc(c*x))/(e*x^2+d)^(5/2),x, algorithm="fricas")

[Out]

[-1/12*((b*c^2*d^3 + (b*c^2*d*e^2 + b*e^3)*x^4 + b*d^2*e + 2*(b*c^2*d^2*e + b*d*e^2)*x^2)*sqrt(-d)*log(((c^4*d
^2 - 6*c^2*d*e + e^2)*x^4 - 8*(c^2*d^2 - d*e)*x^2 + 4*sqrt(c^2*x^2 - 1)*((c^2*d - e)*x^2 - 2*d)*sqrt(e*x^2 + d
)*sqrt(-d) + 8*d^2)/x^4) + 4*(a*c^2*d^3 + a*d^2*e + (b*c^2*d^3 + b*d^2*e)*arccsc(c*x) - (b*d*e^2*x^2 + b*d^2*e
)*sqrt(c^2*x^2 - 1))*sqrt(e*x^2 + d))/(c^2*d^5*e + d^4*e^2 + (c^2*d^3*e^3 + d^2*e^4)*x^4 + 2*(c^2*d^4*e^2 + d^
3*e^3)*x^2), 1/6*((b*c^2*d^3 + (b*c^2*d*e^2 + b*e^3)*x^4 + b*d^2*e + 2*(b*c^2*d^2*e + b*d*e^2)*x^2)*sqrt(d)*ar
ctan(-1/2*sqrt(c^2*x^2 - 1)*((c^2*d - e)*x^2 - 2*d)*sqrt(e*x^2 + d)*sqrt(d)/(c^2*d*e*x^4 + (c^2*d^2 - d*e)*x^2
 - d^2)) - 2*(a*c^2*d^3 + a*d^2*e + (b*c^2*d^3 + b*d^2*e)*arccsc(c*x) - (b*d*e^2*x^2 + b*d^2*e)*sqrt(c^2*x^2 -
 1))*sqrt(e*x^2 + d))/(c^2*d^5*e + d^4*e^2 + (c^2*d^3*e^3 + d^2*e^4)*x^4 + 2*(c^2*d^4*e^2 + d^3*e^3)*x^2)]

Sympy [F]

\[ \int \frac {x \left (a+b \csc ^{-1}(c x)\right )}{\left (d+e x^2\right )^{5/2}} \, dx=\int \frac {x \left (a + b \operatorname {acsc}{\left (c x \right )}\right )}{\left (d + e x^{2}\right )^{\frac {5}{2}}}\, dx \]

[In]

integrate(x*(a+b*acsc(c*x))/(e*x**2+d)**(5/2),x)

[Out]

Integral(x*(a + b*acsc(c*x))/(d + e*x**2)**(5/2), x)

Maxima [F(-2)]

Exception generated. \[ \int \frac {x \left (a+b \csc ^{-1}(c x)\right )}{\left (d+e x^2\right )^{5/2}} \, dx=\text {Exception raised: ValueError} \]

[In]

integrate(x*(a+b*arccsc(c*x))/(e*x^2+d)^(5/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(e>0)', see `assume?` for more
details)Is e

Giac [F]

\[ \int \frac {x \left (a+b \csc ^{-1}(c x)\right )}{\left (d+e x^2\right )^{5/2}} \, dx=\int { \frac {{\left (b \operatorname {arccsc}\left (c x\right ) + a\right )} x}{{\left (e x^{2} + d\right )}^{\frac {5}{2}}} \,d x } \]

[In]

integrate(x*(a+b*arccsc(c*x))/(e*x^2+d)^(5/2),x, algorithm="giac")

[Out]

integrate((b*arccsc(c*x) + a)*x/(e*x^2 + d)^(5/2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {x \left (a+b \csc ^{-1}(c x)\right )}{\left (d+e x^2\right )^{5/2}} \, dx=\int \frac {x\,\left (a+b\,\mathrm {asin}\left (\frac {1}{c\,x}\right )\right )}{{\left (e\,x^2+d\right )}^{5/2}} \,d x \]

[In]

int((x*(a + b*asin(1/(c*x))))/(d + e*x^2)^(5/2),x)

[Out]

int((x*(a + b*asin(1/(c*x))))/(d + e*x^2)^(5/2), x)